
An Ordering of Complexation Ability for a Series of Permethylated Aldopyranoses with Metal Cations in Solution. $^1\text{H-NMR}$ Relaxation Probes

Yoshio TAKAI, Motohiro SHIZUMA, Yasuo OKUMURA, Yukio HIDAKA,
Terukiyo HANAFUSA, Shigetoshi TAKAHASHI, and Masami SAWADA*

Material Analysis Center, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567

By using $^1\text{H-NMR}$ relaxation technique, an ordering of complexation ability for a series of permethylated aldopyranoses with metal cations in solution has been determined, which is identical with that of the peak-intensity for the 1:1 adduct ions by FAB mass spectrometry.

Despite the intensive studies on complexation ability of metal cations (A^+) with underivatized carbohydrates in solution,^{1, 2)} those with permethylated aldopyranoses (M) remain relatively unexplored. An example has been reported for the complexation of 2,3-O-isopropylidene-4-O-methyl-L-rhamnopyranoside with Na^+ in acetone.³⁾ However, the studies do not seem to be systematic for a series of aldopyranoses. We recently demonstrated a practical method by using fast atom bombardment mass spectrometry (FABMS) to observe the corresponding 1:1 adduct ions (M+A)⁺ and described its unique applicability.⁴⁾ For this FAB method to be well understood,^{5, 6)} it is required for complexation ability of permethylated aldopyranoses with metallic (or organic) cations in solution to be explored, especially at the weaker side of the complexation ability.⁴⁾ We now report for the first time a ranking of the complexation ability with cations in solution (a ranking of stability constant (K_s)⁷⁾) mainly determined by using a $^1\text{H-NMR}$ relaxation method.

The utilization of paramagnetic metal cation such as Eu^{3+} has become quite common in probing molecular structures and complexations of organic compounds.^{1, 2, 8)} Such paramagnetic cations can generally cause large changes in NMR spectral patterns and in relaxation phenomena due to its

coordination to the organic molecule. Therefore, complexation ability of a pair of permethylated aldopyranoses with $\text{Eu}(\text{FOD})_3$ can be qualitatively differentiated by competitive experiments (Eq. 2); that is, the permethylated aldopyranose which can be bound more strongly by $\text{Eu}(\text{FOD})_3$ selectively gives rise to larger chemical shifts and much more line broadenings.

Figure 1 shows a typical example (paramagnetic (A) method in Table 1). A small amount of $\text{Eu}(\text{FOD})_3$ (much less than 1 equiv.) is added to a CDCl_3 solution of $\beta\text{-Gal-5(MeO)}^9$ (2 $\mu\text{L}/0.5 \text{ mL}$). $^1\text{H-NMR}$ spectrum changes from (a) to (b), providing chemical shifts and line broadenings. To this solution, $\beta\text{-Man-5(MeO)}$ (2 μL) is added. The spectrum changes to (c), reproducing all the peaks of $\beta\text{-Gal-5(MeO)}$. The observation indicates that $\beta\text{-Gal-5(MeO)}$ is replaced by $\beta\text{-Man-5(MeO)}$ for the complexation with $\text{Eu}(\text{FOD})_3$; that is, an ordering of complexation ability is $\beta\text{-Gal-5(MeO)} < \beta\text{-Man-5(MeO)}$. All competitive experiments we have done are summarized in Table 1.

On the other hand, the utilization of diamagnetic cation such as K^+ or NH_4^+ has also become widely spread.¹⁾ The example has been presented in our previous report by using the addition of $\beta\text{-PhCH}_2\text{CH}_2\text{NH}_3^+\text{PF}_6^-$ (PEA) salt in a CD_3CN solution of $\beta\text{-Tal-5(OMe)}$ etc.⁴⁾ In general, the induced shifts

Table 1. Data of the competitive experiments for permethylated aldopyranoses at 30 °C

Method	Cation	Solvent	Ordering ^{a)}
paramagnetic (A) ^{b)}	Eu^{3+}	CDCl_3	$\beta\text{-Glc} < \alpha\text{-Glc}, \beta\text{-Gal} < \beta\text{-Man}, \alpha\text{-Glc} < \alpha\text{-Gal}, \beta\text{-Gal} < \alpha\text{-Man}, \alpha\text{-Gal} \leq \beta\text{-Gal}$
paramagnetic (B) ^{c)}	Eu^{3+}	CDCl_3	$\alpha\text{-Man} < \beta\text{-Man}$
diamagnetic	$\text{PEA}^+ \text{d)}$	CD_3CN	$\alpha\text{-Glc} \ll \beta\text{-Man} < \alpha\text{-Tal} < \beta\text{-Tal}$

A total ranking in solution: $\beta\text{-Glc} < \alpha\text{-Glc} < \alpha\text{-Gal} \leq \beta\text{-Gal} < \alpha\text{-Man} < \beta\text{-Man} < \alpha\text{-Tal} < \beta\text{-Tal}$

a) All the compounds are permethylated. b) $[(\text{M}_1 \text{---} \text{Eu}(\text{FOD})_3) + \text{M}_2]$ method. c) $[(\text{M}_1 + \text{M}_2) + \text{Eu}(\text{FOD})_3]$ method. d) $\beta\text{-PhCH}_2\text{CH}_2\text{NH}_3^+$.

caused by adding such a salt depend upon (1) amount of added salt, (2) stability constant (K_s), and (3) limiting shift (structure of the complex). When the concentration of the PEA salt is kept constant (1.4×10^{-2} M), the magnitude of the induced shift, for example, of the hydrogen attached to the C-2 ring carbon may reflect the ordering of K_s , as far as these complexation sites are almost the same.⁴⁾ These data are also listed in Table 1 (diamagnetic method).

By comparing the results of paramagnetic and diamagnetic methods with each other, we can construct a qualitative ranking of the complexation ability for a series of permethylated aldopyranoses with cations in solution (Table 1). The ordering is completely identical with that of the relative peak-intensity for the corresponding 1:1 adduct ions by FABMS.⁴⁾ Interestingly, we further found that logarithms of the relative peak-intensities for the 1:1 adduct ions by FABMS show a good correlation with Angyal's calculated free energies in solution,¹⁰⁾ as shown in Fig. 2. This

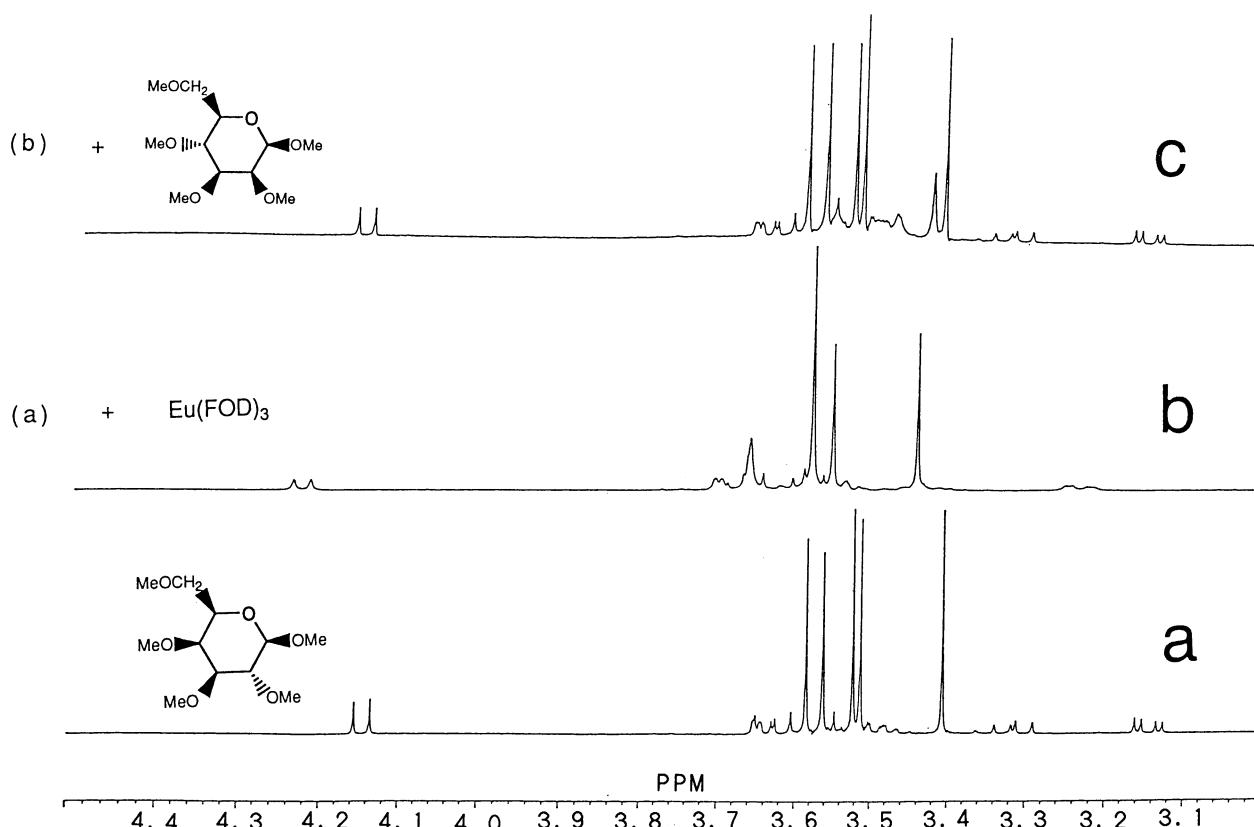


Fig. 1. ^1H -NMR spectra (360 MHz) for competitive experiments in CDCl_3 at 30 °C. (a) ; β -Gal-5(MeO).⁹⁾ (b) ; (a) + $\text{Eu}(\text{FOD})_3$. (c) ; (b) + β -Man-5(MeO).

correlation strongly supports our finding that the solution phase ordering is the same as the peak-intensity ordering by FABMS for this series of complexation.

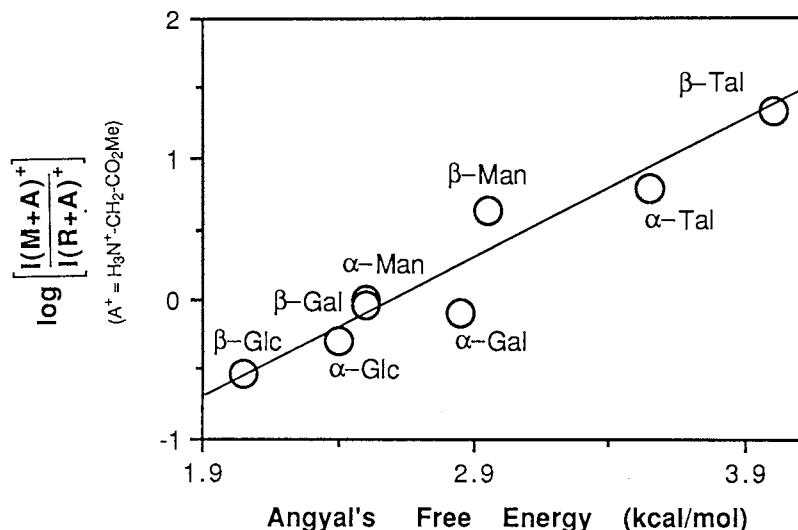


Fig. 2. A correlation of relative peak-intensities by FABMS, $[I(M+A)^+/I(R+A)^+]$, 4) with Angyal's calculated free energies in solution.¹⁰⁾

References

- 1) S. J. Angyal, *Adv. Carbohydr. Chem. Biochem.*, **47**, 1 (1989).
- 2) K. Dill and R. D. Carter, *Adv. Carbohydr. Chem. Biochem.*, **47**, 125 (1989).
- 3) A. H. Haines, K. C. Symes, and A. G. Wells, *Carbohydr. Res.*, **41**, 85 (1975).
- 4) M. Sawada, L. Ouyang, Y. Takai, H. Yamada, M. Shizuma, T. Kinoshita, T. Mochizuki, and T. Hanafusa, *Bull. Chem. Soc. Jpn.*, **64**, 1243 (1991).
- 5) J. A. Sunner, R. Kulatunga, and P. Kebarle, *Anal. Chem.*, **58**, 1312 (1986).
- 6) R. M. Caprioli, "Mass Spectrometry in Biological Research," ed by S. Gaskell, John Wiley, New York (1986), p. 41.
- 7) We could not determine a set of K_s values because of a very small magnitude of induced shifts.⁴⁾
- 8) For example, "Nuclear Magnetic Resonance Shift Reagents," ed by R. E. Sievers, Academic Press, New York (1973).
- 9) Abbreviation: β -Gal-5(MeO) means permethylated β -Galactopyranose.
- 10) S. J. Angyal, *Aus. J. Chem.*, **21**, 2737 (1968).

(Received May 27, 1991)